Search results for " Secondary 14B05"

showing 2 items of 2 documents

Test module filtrations for unit $F$-modules

2015

We extend the notion of test module filtration introduced by Blickle for Cartier modules. We then show that this naturally defines a filtration on unit $F$-modules and prove that this filtration coincides with the notion of $V$-filtration introduced by Stadnik in the cases where he proved existence of his filtration. We also show that these filtrations do not coincide in general. Moreover, we show that for a smooth morphism $f: X \to Y$ test modules are preserved under $f^!$. We also give examples to show that this is not the case if $f$ is finite flat and tamely ramified along a smooth divisor.

Smooth morphismPure mathematicsAlgebra and Number Theory010102 general mathematicsDivisor (algebraic geometry)Commutative Algebra (math.AC)Mathematics - Commutative Algebra01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic GeometryMathematics::K-Theory and Homology0103 physical sciencesPrimary 13A35 Secondary 14B05 14F10Filtration (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematicsUnit (ring theory)Algebraic Geometry (math.AG)Mathematics
researchProduct

$V$-filtrations in positive characteristic and test modules

2013

Let $R$ be a ring essentially of finite type over an $F$-finite field. Given an ideal $\mathfrak{a}$ and a principal Cartier module $M$ we introduce the notion of a $V$-filtration of $M$ along $\mathfrak{a}$. If $M$ is $F$-regular then this coincides with the test module filtration. We also show that the associated graded induces a functor $Gr^{[0,1]}$ from Cartier crystals to Cartier crystals supported on $V(\mathfrak{a})$. This functor commutes with finite pushforwards for principal ideals and with pullbacks along essentially \'etale morphisms. We also derive corresponding transformation rules for test modules generalizing previous results by Schwede and Tucker in the \'etale case (cf. ar…

Primary 13A35 Secondary 14B05General MathematicsType (model theory)Commutative Algebra (math.AC)01 natural sciencesCombinatoricsMathematics - Algebraic GeometryMathematics::Algebraic GeometryMathematics::K-Theory and HomologyMathematics::Category Theory0103 physical sciencesFiltration (mathematics)FOS: MathematicsClosed immersionIdeal (ring theory)0101 mathematicsAlgebraic Geometry (math.AG)MathematicsRing (mathematics)FunctorMathematics::Commutative AlgebraApplied Mathematics010102 general mathematicsMathematics - Commutative AlgebraHypersurface010307 mathematical physicsConstant sheaf
researchProduct